Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Rapid cytoplasmic turnover of yeast ribosomes in response to rapamycin inhibition of TOR.

Identifieur interne : 001132 ( Main/Exploration ); précédent : 001131; suivant : 001133

Rapid cytoplasmic turnover of yeast ribosomes in response to rapamycin inhibition of TOR.

Auteurs : Dimitri G. Pestov [États-Unis] ; Natalia Shcherbik

Source :

RBID : pubmed:22451491

Descripteurs français

English descriptors

Abstract

The target of rapamycin (TOR) pathway is the central regulator of cell growth in eukaryotes. Inhibition of TOR by rapamycin elicits changes in translation attributed mainly to altered translation initiation and repression of the synthesis of new ribosomes. Using quantitative analysis of rRNA, we found that the number of existing ribosomes present in a Saccharomyces cerevisiae culture during growth in rich medium rapidly decreases by 40 to 60% when the cells are treated with rapamycin. This process is not appreciably affected by a suppression of autophagy, previously implicated in degradation of ribosomes in eukaryotes upon starvation. Yeast cells deficient in the exosome function or lacking its cytoplasmic Ski cofactors show an abnormal pattern of rRNA degradation, particularly in the large ribosomal subunit, and accumulate rRNA fragments after rapamycin treatment and during diauxic shift. The exosome and Ski proteins are thus important for processing of rRNA decay intermediates, although they are probably not responsible for initiating rRNA decay. The role of cytoplasmic nucleases in rapamycin-induced rRNA degradation suggests mechanistic parallels of this process to nutrient-controlled ribosome turnover in prokaryotes. We propose that ribosome content is regulated dynamically in eukaryotes by TOR through both ribosome synthesis and the cytoplasmic turnover of mature ribosomes.

DOI: 10.1128/MCB.06763-11
PubMed: 22451491
PubMed Central: PMC3372233


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Rapid cytoplasmic turnover of yeast ribosomes in response to rapamycin inhibition of TOR.</title>
<author>
<name sortKey="Pestov, Dimitri G" sort="Pestov, Dimitri G" uniqKey="Pestov D" first="Dimitri G" last="Pestov">Dimitri G. Pestov</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey, USA. pestovdg@umdnj.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shcherbik, Natalia" sort="Shcherbik, Natalia" uniqKey="Shcherbik N" first="Natalia" last="Shcherbik">Natalia Shcherbik</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22451491</idno>
<idno type="pmid">22451491</idno>
<idno type="doi">10.1128/MCB.06763-11</idno>
<idno type="pmc">PMC3372233</idno>
<idno type="wicri:Area/Main/Corpus">001167</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001167</idno>
<idno type="wicri:Area/Main/Curation">001167</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001167</idno>
<idno type="wicri:Area/Main/Exploration">001167</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Rapid cytoplasmic turnover of yeast ribosomes in response to rapamycin inhibition of TOR.</title>
<author>
<name sortKey="Pestov, Dimitri G" sort="Pestov, Dimitri G" uniqKey="Pestov D" first="Dimitri G" last="Pestov">Dimitri G. Pestov</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey, USA. pestovdg@umdnj.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shcherbik, Natalia" sort="Shcherbik, Natalia" uniqKey="Shcherbik N" first="Natalia" last="Shcherbik">Natalia Shcherbik</name>
</author>
</analytic>
<series>
<title level="j">Molecular and cellular biology</title>
<idno type="eISSN">1098-5549</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antifungal Agents (pharmacology)</term>
<term>Autophagy (MeSH)</term>
<term>Protein Biosynthesis (drug effects)</term>
<term>Protein-Serine-Threonine Kinases (antagonists & inhibitors)</term>
<term>Protein-Serine-Threonine Kinases (metabolism)</term>
<term>RNA, Ribosomal (analysis)</term>
<term>Ribosomes (drug effects)</term>
<term>Ribosomes (metabolism)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae (ultrastructure)</term>
<term>Saccharomyces cerevisiae Proteins (antagonists & inhibitors)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Sirolimus (pharmacology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN ribosomique (analyse)</term>
<term>Antifongiques (pharmacologie)</term>
<term>Autophagie (MeSH)</term>
<term>Biosynthèse des protéines (effets des médicaments et des substances chimiques)</term>
<term>Protein-Serine-Threonine Kinases (antagonistes et inhibiteurs)</term>
<term>Protein-Serine-Threonine Kinases (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (antagonistes et inhibiteurs)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Ribosomes (effets des médicaments et des substances chimiques)</term>
<term>Ribosomes (métabolisme)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Saccharomyces cerevisiae (ultrastructure)</term>
<term>Sirolimus (pharmacologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>RNA, Ribosomal</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Protein-Serine-Threonine Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Protein-Serine-Threonine Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antifungal Agents</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>ARN ribosomique</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Protein Biosynthesis</term>
<term>Ribosomes</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Biosynthèse des protéines</term>
<term>Ribosomes</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Ribosomes</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Ribosomes</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antifongiques</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Autophagy</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="fr">
<term>Autophagie</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The target of rapamycin (TOR) pathway is the central regulator of cell growth in eukaryotes. Inhibition of TOR by rapamycin elicits changes in translation attributed mainly to altered translation initiation and repression of the synthesis of new ribosomes. Using quantitative analysis of rRNA, we found that the number of existing ribosomes present in a Saccharomyces cerevisiae culture during growth in rich medium rapidly decreases by 40 to 60% when the cells are treated with rapamycin. This process is not appreciably affected by a suppression of autophagy, previously implicated in degradation of ribosomes in eukaryotes upon starvation. Yeast cells deficient in the exosome function or lacking its cytoplasmic Ski cofactors show an abnormal pattern of rRNA degradation, particularly in the large ribosomal subunit, and accumulate rRNA fragments after rapamycin treatment and during diauxic shift. The exosome and Ski proteins are thus important for processing of rRNA decay intermediates, although they are probably not responsible for initiating rRNA decay. The role of cytoplasmic nucleases in rapamycin-induced rRNA degradation suggests mechanistic parallels of this process to nutrient-controlled ribosome turnover in prokaryotes. We propose that ribosome content is regulated dynamically in eukaryotes by TOR through both ribosome synthesis and the cytoplasmic turnover of mature ribosomes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22451491</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>11</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5549</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>32</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2012</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Molecular and cellular biology</Title>
<ISOAbbreviation>Mol Cell Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Rapid cytoplasmic turnover of yeast ribosomes in response to rapamycin inhibition of TOR.</ArticleTitle>
<Pagination>
<MedlinePgn>2135-44</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/MCB.06763-11</ELocationID>
<Abstract>
<AbstractText>The target of rapamycin (TOR) pathway is the central regulator of cell growth in eukaryotes. Inhibition of TOR by rapamycin elicits changes in translation attributed mainly to altered translation initiation and repression of the synthesis of new ribosomes. Using quantitative analysis of rRNA, we found that the number of existing ribosomes present in a Saccharomyces cerevisiae culture during growth in rich medium rapidly decreases by 40 to 60% when the cells are treated with rapamycin. This process is not appreciably affected by a suppression of autophagy, previously implicated in degradation of ribosomes in eukaryotes upon starvation. Yeast cells deficient in the exosome function or lacking its cytoplasmic Ski cofactors show an abnormal pattern of rRNA degradation, particularly in the large ribosomal subunit, and accumulate rRNA fragments after rapamycin treatment and during diauxic shift. The exosome and Ski proteins are thus important for processing of rRNA decay intermediates, although they are probably not responsible for initiating rRNA decay. The role of cytoplasmic nucleases in rapamycin-induced rRNA degradation suggests mechanistic parallels of this process to nutrient-controlled ribosome turnover in prokaryotes. We propose that ribosome content is regulated dynamically in eukaryotes by TOR through both ribosome synthesis and the cytoplasmic turnover of mature ribosomes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pestov</LastName>
<ForeName>Dimitri G</ForeName>
<Initials>DG</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Biology, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey, USA. pestovdg@umdnj.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shcherbik</LastName>
<ForeName>Natalia</ForeName>
<Initials>N</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM074091</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>03</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Cell Biol</MedlineTA>
<NlmUniqueID>8109087</NlmUniqueID>
<ISSNLinking>0270-7306</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000935">Antifungal Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012335">RNA, Ribosomal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C500749">target of rapamycin protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000935" MajorTopicYN="N">Antifungal Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="N">Autophagy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014176" MajorTopicYN="N">Protein Biosynthesis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012335" MajorTopicYN="N">RNA, Ribosomal</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012270" MajorTopicYN="N">Ribosomes</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>12</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22451491</ArticleId>
<ArticleId IdType="pii">MCB.06763-11</ArticleId>
<ArticleId IdType="doi">10.1128/MCB.06763-11</ArticleId>
<ArticleId IdType="pmc">PMC3372233</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Immunol. 2009 May;9(5):324-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19390566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1977 Feb 25;252(4):1344-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">320206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1993 Jun;57(2):383-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8393130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2009 Aug 15;23(16):1929-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19684113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Mar 22;295(5563):2258-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11910109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2011 Feb;31(4):803-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21149576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Nov 17;270(46):27531-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7499212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Nov 19;330(6007):1099-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21097934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2006 Nov 17;24(4):619-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17188037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1999 Apr;73(4):2893-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10074137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2011;759:307-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21863495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1981 Nov;1(11):1007-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7050661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat New Biol. 1972 Jan 12;235(54):58-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4500459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4264-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9539725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2001 Nov 9;508(1):23-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11707261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Nov 14;278(46):45041-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12941949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1975 Jun;122(3):855-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1097403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Oct 15;18(20):2491-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Mar 2;17(5):1497-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9482746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2009 May;15(5):977-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19324965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Mar;11(3):1718-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1996117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2006 Oct 16;25(48):6384-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2011 Feb;17(2):338-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21135037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2000 Mar;6(3):449-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10744028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Feb 13;273(7):3963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9461583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2000 Nov;20(21):8230-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11027292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2011 May;12(5):458-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21460796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2008 May;10(5):602-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18391941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2000 Apr 15;28(8):1684-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10734186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2008;451:1-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19185709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7407-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20368444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14866-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10611304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Jan;14(1):129-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12529432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Dec 15;13(24):3271-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10617575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Jan 15;20(2):174-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16418483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 May;10(5):1367-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10233150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2011 Sep;22(18):3379-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21795399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jul 16;460(7253):392-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19587680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1999 Nov;24(11):437-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10542411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Oncol. 2009 May 1;27(13):2278-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19332717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2007 Jan;14(1):15-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17173052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1997 Jun 19;192(2):245-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9224897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2010 Mar;6(3):209-217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20118940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2001 Dec;12(12):3821-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11739783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Apr 1;17(7):859-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12654728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2011 Aug;17(8):1422-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21665996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Sep 3;20(17):4684-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11532933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Oct 15;330(6002):369-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20947765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Jul;11(7):2445-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10888680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2006 Dec;18(6):589-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17046229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Mar 22;295(5563):2262-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11910110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 May 14;34(4):440-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19481524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1990 May 25;18(10):3091-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2190191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 May;10(5):1337-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10233148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Apr;10(4):987-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10198052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Nov 14;91(4):457-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9390555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transplant Proc. 2003 May;35(3 Suppl):7S-14S</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12742462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Mar 23;440(7083):561-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16554824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1992 Oct;119(2):301-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1400575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1977 Apr;10(4):587-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">558828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2008 Oct;33(10):501-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18786828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1994 Feb;10(2):151-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8203157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Oct;19(10):4492-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18701704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1996 Jan;7(1):25-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8741837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Mar;11(3):833-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10712503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2009 Apr 15;23(8):963-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19390089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1998 Aug;18(8):4463-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9671456</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>New Jersey</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Shcherbik, Natalia" sort="Shcherbik, Natalia" uniqKey="Shcherbik N" first="Natalia" last="Shcherbik">Natalia Shcherbik</name>
</noCountry>
<country name="États-Unis">
<region name="New Jersey">
<name sortKey="Pestov, Dimitri G" sort="Pestov, Dimitri G" uniqKey="Pestov D" first="Dimitri G" last="Pestov">Dimitri G. Pestov</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001132 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001132 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22451491
   |texte=   Rapid cytoplasmic turnover of yeast ribosomes in response to rapamycin inhibition of TOR.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22451491" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020